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Abstract: Bone strength is a worldwide health concern. Although multiple techniques have 
been developed to evaluate bone quality, there are still gaps to be filled. Here we report a 
non-invasive approach for the prediction of bone strength in vivo using spatially offset Raman 
spectroscopy. Raman spectra were acquired transcutaneously from the tibiae of mice from 4 
to 23 weeks old and subsequently on the exposed bones. Partial least squares regression was 
applied to generate predictions of the areal bone mineral density (aBMD), volumetric bone 
mineralization density (vBMD), and maximum torque (MT) of each tibia as quantified by 
dual-energy X-ray absorptiometry, microCT imaging, and biomechanical tests, respectively. 
Significant correlations were observed between Raman spectral predictions and the reference 
values in all three categories. To our knowledge, this is the first demonstration of Raman 
spectroscopy predicting a biomechanical bone parameter (MT) in vivo with an uncertainty 
much smaller than the spread in the reference values. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Osteoporosis is a serious disease which affects more than 2 million people in the US [1]. 
Without appropriate diagnosis and treatment, it usually leads to bone fragility and fracture 
and the development of osteoporosis can cause further morbidity and even mortality. Bone 
density testing by dual-energy X-ray absorptiometry (DXA) is the current clinical standard 
for diagnosis. DXA measures areal bone mineral density (aBMD) and can reveal low bone 
mass and thus increased risk of fracture [2]. Despite the accuracy and convenience, aBMD 
measured by DXA can be a poor indicator in some circumstances, e.g. in measurements on 
early postmenopausal women [3], and requires the use of ionizing radiation. Similarly, X-ray 
computed tomography (CT) has been developed to scan bones and generate high resolution 
images of volumetric bone mineralization density (vBMD) [4]. However, CT requires a 
radiation dose around 100 times higher than DXA [5]. Magnetic resonance imaging (MRI), 
another non-invasive method commonly used to image the musculoskeletal system, has also 
been demonstrated to measure the density of bones [6]. MRI is not frequently applied on 
bones, however, due to its high cost. Recently, a minimally invasive diagnostic technique 
named reference point indentation (RPI) was also developed for the assessment of bone 
mechanical quality in vivo [7]. 

In addition to bone density and mechanical properties, chemical composition is a 
fundamental parameter related to bone quality. As a traditional non-invasive and label-free 
method for chemical characterization, Raman spectroscopy (RS) has shown its feasibility in 
measuring the mineral and organic matrix components in ex vivo bone studies [8–10]. 
Previous studies have shown RS can be used to measure perturbations to animal bone 
biochemistry due to disease, age [8,11], or exposure to heavy metals [12,13] or the effects of 
aging on human bone [14]. Significant correlations between Raman and biomechanical 
properties of bones have also been observed in these studies [8,11,13] with quantitative 
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metrics suggesting that RS provides more accurate predictions of bone strength than the 
clinical parameter of aBMD. 

In performing in vivo Raman spectroscopy on bones, one major concern is the 
confounding spectrum of the overlying soft tissue. Because this tissue contains some of the 
same chemical constituents as bone—most notably Type I collagen—it is desirable to reduce 
its contribution to the measured spectrum. Near-infrared confocal Raman microscopy is 
generally not suitable for transcutaneous bone characterization due to the limited penetration 
depth of approximately 500 microns in tissue [15]. Traditional wide-field 
illumination/collection from a surface spot several millimeters in diameter allows deeper 
regions to be probed, but their signal percentage is low compared to shallower regions. 
Spatially offset Raman spectroscopy (SORS), in contrast, introduces an offset between the 
illumination and collection regions to increase the percentage of signal from deeper regions, 
with the tradeoff of lower overall signal strength [16]. Previous studies have used SORS to 
detect bone beneath soft tissue [17–21]. Schulmerich et al. [17] gathered SORS measurements 
on 32 live mice and their exposed bones. They successfully detected bone spectra beneath 
soft tissue, though the performance was affected by system alignment and animal coat color. 
Buckley et al. [21] demonstrated spectral differences, albeit statistically underpowered, 
between 6 healthy human and 10 patients with osteoporosis, using in vivo SORS. Our group 
has also used SORS to detect disease-related differences in murine bones ex vivo [8]. To 
subtract off the remaining contribution from the soft tissue on top of bones, we also 
developed a simultaneous, overconstrained, library-based decomposition (SOLD) fitting 
method to separate the signal of bones from transcutaneously-acquired Raman spectra [18]. 
Furthermore, by using SORS to measure subcortical bone tissue from a mouse model of 
genetic osteogenesis imperfecta, we found that SORS was more sensitive to these specific 
disease-related biochemical changes than conventional Raman spectroscopy [20]. 

Here, we demonstrate that transcutaneous SORS measurements on live mice enable the 
prediction of three standard bone-quality metrics. We applied SORS on the right hind tibiae 
of mice and conducted DXA, microCT, and torsion testing subsequently to measure bone 
mineral density (aBMD), volumetric bone mineralization density (vBMD), and maximum 
torque (MT), respectively. Chemometric models were then constructed to predict aBMD, 
vBMD, and MT. The results indicate for the first time that SORS spectra acquired 
transcutaneously and in vivo can accurately predict bone mineralization and strength. 

2. Material and methods 
2.1 Specimens 

The mice used in this study ranged in age from 4 to 23 weeks and came from two different 
strains. Four male and four female C57BL/6J (black) mice with ages of 4 weeks and 23 
weeks; four male and four female B6(Cg)-Tyrc-2J/J (Albino) mice with ages of 4 weeks, 8 
weeks and 12 weeks; which is in total 40 mice, were measured transcutaneously on the right 
hind tibia with a SORS instrument (see Fig. 1). Following the transcutaneous measurements, 
mice were sacrificed and tibiae were extracted and evaluated by Raman spectroscopy. The 
exposed bone specimens were stored in phosphate buffered saline and frozen for less than 24 
hours before the subsequent microCT, DXA, and biomechanical testing. 

2.2 Raman spectroscopy 

All the Raman data in this study were obtained with a RS system that has been described 
previously [8,20]. Briefly, the sample was excited with an infrared laser with 830-nm 
wavelength and 150-mW power in a spot with 230-µm diameter. The Raman scattered light 
was collected with a numerical aperture (NA) of 0.34 and imaged onto a circular bundle of 61 
multimode fibers (0.27 NA, 100/120 µm core/cladding diameters), with the center fiber 
coregistered with the excitation spot on the sample. Light delivery and collection are both 
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performed in a non-contact manner, with a consistent standoff distance of about 2 cm set by 
the focal length of the imaging/collecting lens. The other end of the bundle rearranged the 
fibers linearly at the entrance to a f/1.8 imaging spectrograph (Kaiser HoloSpec), and a charge 
coupled device (CCD) array enabled acquisition of 40 separate fibers’ spectra (limited by the 
array height). For the measurements of exposed bone, the laser illumination spot was 
defocused to a spot 1 mm in diameter overlapping the image of the entire collection fiber 
bundle to provide a wide field measurement. For each location on the mouse leg, spectra were 
acquired for five 60-second exposures and averaged. 

Fiber spectra were processed as described previously [6], including cosmic ray removal, 
readout and dark current subtraction, and image aberration correction. For transcutaneous 
measurements, the 40 spectra were converted into three spectral averages, corresponding to 
the central region of the circular end (henceforth “Ring 1”) and two concentric rings around it 
(“Rings 2 and 3”), as illustrated in Fig. 1. These three average spectra corresponded to spatial 
offsets between illumination and collection from s = 0 to approximately s = 0.5 mm. For the 
wide-field exposed bone measurements, a single average was computed using all 40 fibers’ 
spectra. Five measurements along the midshaft of the tibia at 1 mm intervals were averaged to 
produce a single spectrum per tibia. A continuous wavelet transform background-correction 
algorithm subtracted a fluorescence estimate from each raw spectrum [22]. The spectra were 
then smoothed with a Savitzky-Golay filter [23] over a 3 pixel window to match the spectral 
resolution of the system (approximately 5 cm−1). 

 

Fig. 1. (a) Schematic of collection fiber images at the tissue surface, with ring 3 being the 
outermost zone. (b) Setup for live mouse measurement, with focusing/collecting lens above the 
right tibia and nose cone for anesthesia. (c) Zoomed in view with Raman sampling locations 
above the tibia indicated by overlaid red dots. 

2.3 Dual-energy X-ray absorptiometry 

aBMD was measured on the right tibia using a PIXImus dual-energy X-ray absorptiometer 
(GE-Lunar), as described elsewhere [24]. Briefly, the equipment was calibrated daily on a 
mouse phantom provided by the manufacturer. X-ray absorptiometry data were collected and 
processed with provided software (Lunar PIXImus 2, Version 2.1, GE-Lunar). 

2.4 Microcomputed tomography 

The procedures for measuring vBMD using microCT have been described previously [8]. 
Briefly, a Scanco VivaCT 40 (Scanco Medical AG, Bassersdorf, Switzerland) with 0.5 µm 
isotropic resolution was used to measure vBMD in the proximal half of the tibia. The value 
was calculated from three-dimensional reconstructions of microCT scans generated by 
complete image solution software (Scanco, Medical, Basserdorf, Switzerland). 
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2.5 Biomechanical testing 

Following DXA, microCT, and Raman measurements, tibiae were evaluated in torsion via a 
biomechanical torsion test described previously [8]. Briefly, tibiae were rehydrated and 
mounted on an EnduraTec TestBenchTM system (200 N·mm torque cell; Bose Corporation, 
Minnetonka, Minnesota), with 4 mm of bone length exposed between the contact points. 
Bones were gradually loaded in torsion at a rate of 1 °/s until fracture, and the maximum 
torque (MT) applied prior to fracture was recorded. Due to fragility, two bones from 4-week-
old mice and one from an 8-week-old were broken prior to torsion testing (but after DXA and 
microCT testing), and thus only 37 MT values were obtained. 

Torsional testing, the method chosen in this study, explores one mode of loading that 
commonly leads to long bone fractures in humans. Bending, another common fracture mode, 
is explored by other tests such as three-point bending, e.g. in a model of skeletal fragility [25]. 

2.6 Data analysis 

Linear models to predict biomechanical properties from Raman spectral data were built using 
standard partial least squares regression (PLSR) [23] as described previously [8]. A leave one 
out cross validation (LOOCV) approach was used to generate Raman-based prediction of 
aBMD for each tibia via PLSR, and the root mean squared error of cross validation 
(RMSECV) was calculated. In each iteration of the cross-validation, the rank of the PLSR 
model was selected based on the method published by Haaland and Thomas [26] and required 
to be smaller than one third of the sample size, in order to prevent overfitting the calibration 
data [27]. The same processing was done for prediction of vBMD. 

To guard against flaws in the biomechanical measurements, MT values more than three 
median absolute deviations away from the median of their age cohort were excluded as 
outliers. This criterion rejected two MT measurements, leaving 35 mice for analysis. Two 
different PLS approaches were used. In the first approach, the entire set of mice was analyzed 
as a single group, just as for aBMD and vBMD prediction. In the second approach, the 
spectra from 23-week-old mice were placed in a separate group from the younger ones, and a 
separate LOOCV PLSR model was developed for each group. The reasoning for this, related 
to chemical effects at different ages, will be explained in the subsequent section. 

3. Results and discussion 
Figure 2 shows representative in vivo Raman spectra acquired over the tibia of a mouse. The 
three spectra were acquired from different rings (see Fig. 1(a)). The corresponding peaks in 
all three spectra have similar signal to noise, as the larger number of fibers in ring 3 
compensates for the larger per-fiber signal strength in ring 1. Prominent tissue and bone peaks 
can be found in all spectra, such as CH2 (1450 cm−1), Amide III (1243-1320 cm−1), 
hydroxyproline (876 cm−1), phosphate (959 cm−1) and carbonate (1070 cm−1) [28]. The 
relative strength of the mineral peaks increases as the offset increases, as expected from the 
increased relative contribution from greater depths. The higher bone-to-soft-tissue ratio in 
ring 3 would be expected to be the most valuable for analysis of bone strength. Most of the 
subsequent analysis was therefore performed using the spectra from ring 3, although a 
comparison with ring 1 results will also be discussed. 
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Fig. 2. Transcutaneous Raman spectra acquired over one mouse tibia with different source-
detector offsets, from 0 (Offset 1) to 0.5 mm (Offset 3), based upon the rings defined in Fig. 
1(a). Spectra are normalized to the area under the peak at 1660 cm−1. The relative increase in 
the phosphate peak from Offset 1 to Offset 3 indicates the stronger relative contribution of 
bone in Offset 3. 

Figures 3(a) and (b) depict the trends of aBMD and MT with age. It can be seen from Fig. 
3 that the aBMD keeps increasing across the entire range of ages, whereas the MT value in 
the 23-week group does not increase. This MT trend is consistent with literature reports [29]. 
Figure 3(c) shows that the mean carbonate to phosphate band-area ratio in the Raman spectra 
(normalized to 1 at week 4) increased significantly in the 23-week-old mice (p<0.01 in t tests 
between 23-week group and any other group) while the groups with ages from 4-week to 16-
week are comparable to each other. There are different chemical trends that affect MT in this 
mouse population as a function of age. As juvenile mice grow from 4 to 20 weeks old, the 
total mineral content in the tibiae increases, which tends to elevate MT. Once the mice are 
mature, however, this increase halts, but carbonate substitution (for phosphate) is now 
observed, which tends to reduce MT. This supports the suggestion made in the Methods 
section above, that age-range-specific PLSR models might work better in predicting MT due 
to the different age-related chemical trends. 

 

Fig. 3. (a) Tibial aBMD as a function of mouse age. (b) Same for MT. (c) Same for carbonate 
to phosphate peak area ratio (CTPR). CTPR values are normalized to the mean band-area ratio 
of the 4-week-old group. Error bars represent the standard error of the mean. 

Figure 4 shows predictions of aBMD stemming from regressions of transcutaneous (a) 
and exposed bone (b) Raman spectra against reference values from DXA. Both plots show 
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significant correlation between the measured and predicted aBMD (p<0.0001 for both, 
Pearson’s test [30]). The RMSECV of the transcutaneous predictions is about 17% larger than 
that of exposed bone (0.007 versus 0.006 g/cm2). The accuracy of each prediction is 
quantified in Table 1. The most common PLS model ranks selected during the LOOCV 
process are included in Table 2. 

 

Fig. 4. (a) Correlation between predicted aBMD based on PLSR of Raman spectra measured 
transcutaneously on live mice and that of the reference obtained by DXA. (b) Correlation 
between predicted aBMD based on PLSR of Raman spectra measured on exposed bone and 
that of the reference obtained by DXA. 

Figure 5 shows corresponding scatter plots for Raman-based prediction of vBMD versus 
reference values from micro-CT. Again, both plots show significant correlation between the 
measured and predicted vBMD (p<0.0001). The RMSECV generated from transcutaneous 
measurement is 20% larger than that of exposed bone (35.7 versus 29.7 mg HA/ccm). The 
accuracy of each prediction is quantified in Table 1. The typical ranks used in PLSR models 
are included in Table 2. 

 

Fig. 5. (a) Correlation between predicted vBMD based on PLSR of Raman spectra measured 
transcutaneously on live mice and that of the reference obtained by microCT. (b) Correlation 
between predicted vBMD based on PLSR of Raman spectra measured on exposed bone and 
that of the reference obtained by microCT. 

Figure 6 shows the corresponding scatter plots for Raman predictions of MT versus 
reference values from the torsion test. The transcutaneous and exposed-bone plots both show 
significant correlation between the measured and predicted MT (p<0.0001). The RMSECV 
generated from transcutaneous measurement is 18% smaller than that of exposed bone (2.7 
versus 3.3 N·mm). These results are summarized in Table 1. The typical ranks used in PLSR 
models are included in Table 2. Within Fig. 6, we noticed that the MT predictions for the 23-
week-old subgroup showed no significant correlation with reference values. As noted above, 
this was anticipated based upon chemical effects that only appeared in this age range. When a 
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separate leave-one-out regression was performed that excluded the 23-week-old mice, the 
RMSECV was lower (2.2 versus 2.7 N·mm). 

 

Fig. 6. (a) Correlation between predicted MT based on PLSR of Raman spectra measured 
transcutaneously on live mice and that of the reference obtained by bone torsion test. (b) 
Correlation between predicted MT based on PLSR of Raman spectra measured on exposed 
bone and that of the reference obtained by bone torsion test. 

Table 1. Accuracy of bone quality prediction using Raman spectra as predictor 

Bone property Transcutaneous Exposed 

RMSECV r2 p RMSECV r2 p 

aBMD (g/cm2) 0.007 0.53 <0.0001 0.006 0.68 <0.0001 
vBMD (mg 
HA/ccm) 

35.7 0.82 <0.0001 29.7 0.87 <0.0001 

MT (N·mm) 2.7 0.48 <0.0001 3.3 0.21 0.003 

Table 2. Typical ranks used in PLSR models for different predictions 

Bone property Transcutaneous Exposed 

aBMD 5 4 

vBMD 7, 8 12 

MT 5 5 

 
Like Raman spectroscopy, microCT also provides a vector of numbers related to the 

region of inspection. For comparison with Raman spectroscopy, a separate regression was 
performed to predict MT using not Raman spectra but instead four parameters derived from 
the microCT measurement (bone area, tissue area, vBMD, and cortical thickness) [8]. The 
scatter plot is shown in Fig. 7. The RMSECV is 1.5 N·mm (r2 = 0.89, p<0.0001), as compared 
to 2.5 for the transcutaneous Raman spectra. However, different from the Raman case, 
regression excluding the 23-week group to predict younger mice led to worse performance 
(RMSECV = 1.8 N·mm). 
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Fig. 7. Correlation between predicted MT based on PLSR of multiple microCT values (bone 
area, tissue area, vBMD, cortical thickness) and that of the reference obtained by torsion test. 

To highlight the influence of the spatial offset, we compared predictions when Raman 
spectra from ring 1 were used instead of those from ring 3. Figure 8 shows the results. The 
two rings predicted aBMD values equivalently (r2 = 0.50 for ring 1 versus 0.53 for ring 3), but 
the correlation with measured MT values was much worse for ring 1 (0.19 versus 0.53). 

 

Fig. 8. (a) Correlation between predicted aBMD based on PLSR of Raman spectra from ring 1 
(marked by red triangles) compared with ring 3 (marked with blue circles) measured 
transcutaneously on live mice and that of the reference obtained by DXA. Correlation 
coefficients were similar for the two offsets. (b) Correlation between predicted MT based on 
PLSR of Raman spectra from ring 1 (marked by red triangles) compared with ring 3 (marked 
with blue circles) measured transcutaneously on live mice and that of the reference obtained by 
torsion test. In this case, the correlation was noticeably stronger for the larger offset (r2 = 0.53 
versus 0.19). 

The goal of this study was to investigate the feasibility of using SORS in vivo for 
prediction of bone quality. Our results have demonstrated that although the Raman spectra 
acquired transcutaneously from tibiae in live mice contain signal from overlying soft tissue, 
the Raman-predicted bone quality metrics of aBMD, vBMD, and MT show strong correlation 
with DXA, microCT and torsion test measured values. Moreover, in vivo transcutaneous 
measurements show comparable performance (less than 20% difference in RMSECV for all 
three parameters) to measurements of exposed bones ex vivo. The results indicate the 
applicability of SORS for in vivo bone assessment. 

In addition, Raman spectroscopy has an advantage over X-ray methods as a noninvasive 
estimate of bone strength because it is sensitive to chemicals other than minerals. As Fig. 3 
indicates, mineral density increased steadily with age across all mice, but the increase of 
maximum torque halted between 12 and 23 weeks of age. The relationship of maximum 
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torque to bone mineral density therefore has a complicated dependence that changes with age. 
As Fig. 7 shows, when four micro-CT parameters are used, regressions to predict MT are 
better than when Raman spectroscopy alone is used (RMSECV of 1.5 vs. 2.5 N·mm). Since 
Raman spectroscopy can sense different types of minerals (phosphate versus carbonate) as 
well as Type I collagen, Raman combined with CT may add extra information about bone 
quality and could potentially produce the most accurate predictions. 

The comparison of spatial offsets in Fig. 8 showed that the greater offset of Ring 3 led to 
more accurate predictions of MT, but no improvement in aBMD. This discrepancy is 
probably because the overlying soft tissue’s Raman spectrum is dominated by Type I collagen 
and contains no phosphate or carbonate peaks. As such, the reduced soft tissue contribution at 
larger offset should have no influence upon the estimation of aBMD, which is a mineral-
specific parameter. Maximum torque, however, depends partly upon the ratio of mineral to 
matrix in the bone itself. The collagen signal from soft tissue affects the measured ratio of 
mineral to Type I collagen and thus obscures the true ratio in the bone alone, making MT 
prediction more difficult. Reducing the soft tissue’s collagen signature in the Ring 3 spectra 
reduced this obscuration, presumably leading to the more accurate predictions that were 
observed at this greater offset. Although Ring 3 maximized the signal contribution from 
bones, spectra from Ring 3 are still a composite of all layers and thus the influence of soft 
tissue is not eliminated. If spectral contributions from soft tissue were further suppressed by 
post-processing methods, such as band-targeted entropy minimization [31] or simultaneous 
overconstrained library-based decomposition [18], potentially the accuracy could be increased 
further. 

Changes in the chemometric modeling might also improve the accuracy of our approach. 
This is especially true for MT, because it has a more complex dependence upon chemical 
composition than aBMD and vBMD. As noted above, in this study we explored separate 
regressions to predict MT for different age groups (4-12 weeks and 23 weeks) because of the 
changing relationship between MT and relative carbonate concentration at different ages (see 
Fig. 3). We expected that linear regression methods such as PLS might have trouble building 
a robust model for direct prediction of MT under those conditions. Indeed, regression using 
one PLSR model for all the mice resulted in a higher RMSECV (2.7 instead of 2.2 N·mm). As 
a result of having to split the mice into two groups, the regression for the 23-week group 
suffered from the small sample size (eight total mice), leading to uncorrelated predictions 
within this group. While this could be mitigated by obtaining more data from older mice, a 
nonlinear regression method might help to generate a more accurate single prediction model 
in the future. 

It is also possible that uncertainties in the reference MT measurement (i.e. the torsion test) 
are a limiting factor in the Raman prediction accuracy. Although the tibiae were cemented 
with the same length exposed, the shapes of the tibiae from mice of different ages were 
different, e.g. the tibiae from older mice were straighter than younger ones. This may 
influence the consistency of testing among all groups. In future work, the accuracy and 
reproducibility of the torsion test could be explored using synthetically engineered samples 
whose properties are nominally identical. 

This study is the first to demonstrate the ability of transcutaneous in vivo Raman 
spectroscopy to predict anatomical and biomechanical bone properties in mice as measured 
by microCT, DXA, and torsion tests. The data presented here examined mice from a range of 
ages. Interesting future directions would be applying SORS to monitor bone change during 
osteoporosis development longitudinally and bone recovery after clinical treatment. 

4. Conclusions 
To summarize, this study suggests that Raman spectroscopy can be used to non-invasively 
and accurately predict the strength of mouse bones in vivo. To our knowledge, this is the first 
report of Raman spectroscopy producing estimates of maximum torque in vivo that correlate 
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significantly with reference measurements. The data in this study support the potential of 
Raman spectroscopy for the investigation of bone quality. 
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